Prefrontal Mechanisms in Extinction of Conditioned Fear

Gregory J. Quirk, René Garcia, and Francisco González-Lima

Interest in the medial prefrontal cortex (mPFC) as a source of behavioral inhibition has increased with the mounting evidence for a functional role of the mPFC in extinction of conditioned fear. In fear extinction, a tone-conditioned stimulus (CS) previously paired with a footshock is presented repeatedly in the absence of footshock, causing fear responses to diminish. Here, we review converging evidence from different laboratories implicating the mPFC in memory circuits for fear extinction: (1) lesions of mPFC impair recall of extinction under various conditions, (2) extinction potentiates mPFC physiological responses to the CS, (3) mPFC potentiation is correlated with extinction behavior, and (4) stimulation of mPFC strengthens extinction memory. These findings support Pavlov's original notion that extinction is new learning, rather than erasure of conditioning. In people suffering from posttraumatic stress disorder (PTSD), homologous areas of ventral mPFC show morphological and functional abnormalities, suggesting that extinction circuits are compromised in PTSD. Strategies for augmenting prefrontal function for clinical benefit are discussed.

Key Words: Amygdala, infralimbic, long-term potentiation, prelimbic, PTSD

The study of fear and anxiety in experimental animals has advanced rapidly with the use of Pavlovian fear conditioning, in which a tone-conditioned stimulus (CS) is associated with a footshock unconditioned stimulus (US). Conditioned fear reactions to the tone extinguish in the absence of the shock. The resurgence of interest in extinction is due in large part to its potential applicability to the treatment of anxiety disorders, such as posttraumatic stress disorder (PTSD), in which extinction is thought to be compromised. A thorough understanding of the neural circuits of extinction of fear could yield new treatments for augmenting exposure-based therapies that are used to treat PTSD (Anderson et al. 2004; Ressler et al. 2004).

In his classic investigation of appetitive conditioning in dogs, Pavlov observed that extinguished responses spontaneously recovered with the passage of time (Pavlov 1927). This suggested that extinction did not erase the memory for conditioning but represented new learning. More recent behavioral studies have confirmed and extended this finding for conditioned fear (Bouton 2002; Quirk 2002; Rescorla 2004; Rescorla and Heth 1975). If extinction does not erase the conditioning memory, it must form a new memory that inhibits the conditioned response. This suggests that some structure or structures are activated by extinction, so as to excite inhibitory circuits that are responsible for reducing the expression of fear (Figure 1). Despite early theoretical formulations of extinction-related inhibition (Konorski 1967; Pavlov 1927), the search for inhibitory circuits largely has been unsuccessful (Chan et al. 2001; Kimble and Kimble 1970). However, studies that build on recent advances in the acquisition of conditioned fear point to the medial prefrontal cortex (mPFC) as an important part of the neural circuit for fear extinction. In this review, we describe converging evidence from lesion, recording, metabolic, stimulation, and microinfusion studies in rodents supporting this hypothesis. We also suggest ways in which prefrontal mechanisms of extinction may be augmented so as to enhance extinction, with potential clinical applications.

Lesion Studies

The idea that extinction circuits involved the prefrontal cortex originated with early primate studies of appetitive conditioning, in which lesions of the ventral mPFC (vmPFC) and orbitofrontal cortex resulted in increased responding during extinction (Butter et al. 1963; for a complete history of prefrontal cortex in extinction, see Sotres-Bayon et al. 2006, in this issue). Later, Morgan and colleagues (Morgan et al. 1993; Morgan and LeDoux 1995) observed that rats with vmPFC lesions could acquire fear normally but had difficulty extinguishing across several days of extinction training. Quirk and colleagues (2000) then showed that rats with vmPFC lesions that were centered on the infralimbic cortex (IL) could extinguish normally within a session but had difficulty recalling extinction 24 hours later, suggesting that IL is not required for fear inhibition under all circumstances but is important for recalling extinction after a long delay. Other studies have confirmed that vmPFC lesions impair recall of extinction in aversive (Lebron et al. 2004; Morgan et al. 2003; Morrow et al. 1999; Weible et al. 2000) and appetitive (Rhodes and Killcross 2004) conditioning.

Recording Studies

Lesion studies presuppose that regional contributions to brain function may be inferred from a damaged brain. A more direct approach is to record from neuronal activity in awake animals undergoing extinction training. Do mPFC neurons signal extinction? Paralleling mPFC lesion findings, single neurons in IL did not signal the tone CS during acquisition or extinction training (Milad and Quirk 2002). The next day, however, when rats were recalling extinction, IL units showed potentiation of short-latency tone responses (Figure 2). The larger the tone response, the lower the spontaneous recovery of freezing, consistent with IL-mediated inhibition of fear after extinction. No such potentiation was observed in adjacent prelimbic cortex. Thus, extinction potentiated auditory inputs to IL neurons, providing direct support for the Pavlov-Konorski hypothesis that extinction potentiates neuronal activity in structures that are involved in inhibition of the conditioned response (Konorski 1967; Pavlov 1927).

What inputs to mPFC might become potentiated as a result of extinction? To address this, Garcia and colleagues determined whether repeated presentations of a tone CS in the absence of...
Metabolic Mapping may impair extinction learning and memory. Of various inputs to mPFC is needed to determine which ones. Local inactivation of auditory-cortex lesions impair extinction of auditory fear conditioning. Converging lines of evidence showing that the infralimbic prefrontal cortex (IL) is functionally involved in recall of extinction. (A) Lesions of IL do not prevent extinction but interfere with recall of extinction the following day (modified from Milad and Quirk, 2002). (B) Unit recording shows that IL neurons respond to the tone only during recall of extinction, suggesting that IL tone responses are responsible for low fear after extinction (modified from Milad and Quirk, 2002). (C) Infusing the protein synthesis inhibitor anisomycin (Aniso) into the IL just before extinction (arrow) has no effect on extinction learning but blocked recall of extinction the following day (modified from Santini et al 2004). These and other data suggest that extinction-induced potentiation of prefrontal neuronal activity is necessary for suppression of fear after extinction. vmPFC, ventral medial prefrontal cortex; Habit., habituation; Cond., conditioning.

Figure 1. Schematic relating conditioned behavior to memory for conditioning and extinction. As first suggested by Pavlov, extinction training does not eliminate memory for conditioning but generates a new memory that competes with conditioning for control of behavior. For conditioned fear, this schema suggests that there are structures in the brain that increase their neuronal activity with extinction, so as to drive down fear via inhibition of fear expression centers.

The US induces long-term potentiation (LTP) in the mPFC. The mPFC receives glutamatergic inputs from the hippocampus (Jay and Witter 1991), the mediodorsal thalamus (MD; Pirot et al 1994), and the basolateral amygdala (BLA; McDonald 1991). High-frequency stimulation of each of these input areas results in LTP in mPFC-evoked potentials (Herry et al 1999; Jay et al 1995; Maroun and Richter-Levin 2003). So far, analyses of two of these pathways have confirmed development of LTP-like changes in the mPFC with extinction training. MD-evoked responses in mPFC show little change during extinction training but are increased 1–7 days after extinction (Herry et al 1999; Herry and Garcia 2002). Similarly, extinction-related LTP takes place in the hippocampal-mPFC pathway after extinction training (Farinelli et al, in press). Interestingly, failure to recall extinction was associated with inhibition of MD-evoked potentials, and depressing the MD-mPFC pathway with low-frequency stimulation caused full recovery of conditioned fear after extinction (Herry and Garcia 2002, 2005). Thus, extinction training results in LTP of thalamic inputs to mPFC even days after extinction, paralleling the single-unit recording studies (Milad and Quirk 2002) and indicating a role of mPFC in long-term retention of extinction memory. Thus, inputs to the mPFC from the thalamus, hippocampus, or the BLA may become potentiated after extinction.

Microinfusion data have strongly implicated the BLA in acquisition of extinction (Lin et al 2003; Myers and Davis 2002); however, lesions of the basal nucleus have no effect on short- or long-term memory for extinction (Anglada-Figueroa and Quirk 2005; Sotres-Bayon et al 2004). This highlights the potential importance of the lateral amygdala in the acquisition of extinction. Another potentially important input to mPFC is the auditory association cortex (Condé et al 1995), in light of reports that auditory-cortex lesions impair extinction of auditory fear conditioning (Song and Kim 2004; Teich et al 1989). Local inactivation of various inputs to mPFC is needed to determine which ones may impair extinction learning and memory.

Metabolic Mapping

In addition to single-unit and evoked potential recording, extinction of auditory conditioning also has been investigated with metabolic-mapping techniques that assess the uptake of fluorodeoxyglucose (FDG), a radiolabeled glucose analog (Barrett et al 2003). Brain activity can be mapped with FDG because brain cells use glucose and its analogs for energy metabolism (Sokoloff 1992). An important advantage of metabolic mapping over electrophysiological recording methods is that the entire brain can be examined at once, permitting visualization of behavioral networks. Metabolic responses to a test tone were compared in groups of mice that received fear conditioning, a pseudorandom treatment (unpaired tones and shocks), or conditioning followed by extinction. Consistent with single-unit and evoked-potential recording, the largest increase in metabolic activity after extinction occurred in the mPFC. The infralimbic (but not the prelimbic) area showed significantly more metabolic activity than controls. In addition to IL, significant metabolic increases were observed in dorsal, medial, and lateral frontal cortex, which are areas not yet studied with the unit-recording technique. Hence, multiple prefrontal regions may play a role in extinction memory. There also were changes in the interaction between the prefrontal cortex and other regions, particularly in auditory and limbic networks. In support of an inhibitory role, FDG labeling in dmPFC, in IL cortex, and in dorsal and lateral frontal cortex was correlated significantly with extinction behavior (Barrett et al 2003). Finally, there was a strong negative correlation between prefrontal areas and regions thought to be involved in expression of conditioned fear, such as the ventral tegmental area, MD thalamus, and the entire auditory system (brainstem, thalamic, and cortical levels; Barrett et al 2003).

These mapping data suggest that extinction training engages a network of interactive brain regions, which may serve two functions: to inhibit the conditioned response after extinction and to preserve some of the original CS-US associative effects.
from acquisition. Thus, there is remarkable convergence between the three different techniques (single-unit, evoked potential, metabolic mapping) in two species (rat and mouse), showing that extinction potentiates vmPFC responses to the tone CS (Table 1). These results clearly support Pavlov’s cortical inhibition hypothesis and contradict the simpler notions of extinction as unlearning or reversal of acquisition.

Molecular Studies

Formation of long-term memory has been linked to a molecular cascade involving N-methyl-D-aspartate (NMDA)-mediated calcium entry, activation of protein kinases, gene expression, and protein synthesis (Kandel 2001). Involvement of this cascade in extinction would provide support for the idea that extinction constitutes new learning. It has been known for some time that blocking NMDA receptors systemically (Baker and Azorlosa 1996; Cox and Westbrook 1994; Santini et al 2001) or within the amygdala (Falls et al 1992; Walker and Davis 2002) prevents the formation of long-term memory for extinction. Protein kinases and protein synthesis in the amygdala also have been implicated in extinction (Lin et al 2003; Lu et al 2001).

Recent evidence suggests that a similar molecular cascade operates in the mPFC during extinction. Antagonists of NMDA receptors (Burgos-Robles et al 2004), mitogen-activated protein kinases (MAPk; Hugues et al 2004), or protein synthesis (Santini et al 2004) prevent the formation of long-term (but not short-term) extinction when microinfused into the mPFC. In each case, delaying the infusion 2 or 4 hours after extinction eliminated the effect, consistent with a time-limited role of molecular processes in consolidation of extinction. Western blot analysis of prefrontal tissue shows that infusion of MAPk inhibitor PD098059 into the mPFC immediately after extinction decreased levels of phosphorylated ERK2 without affecting total ERKs (Hugues et al, in press). Future experiments will determine whether inhibition of extracellular signal-regulated kinase-2 (ERK2) phosphorylation is related to LTP in the MD-mPFC or hippocampal-mPFC pathways or to other inputs to the mPFC (for example, from the BLA; see Maroun and Richter-Levin, 2003).

Does activation of the ERK-MAPk system in the mPFC trigger gene expression necessary for extinction memory? Although little is known about extinction-induced gene expression, it recently was shown that extinction training stimulates the immediate early gene c-Fos in the mPFC (Mickley et al 2005; Santini et al 2004). Controls indicated that this up-regulation was not a result of tone stimulation or acquisition of fear conditioning. c-Fos is a marker of cellular activity but also can act as a transcription factor when dimerized with c-Jun (Kaczmarek 2002). These findings are consistent with a role of gene expression in extinction memory, although transcription inhibitors and transgenic approaches will be needed to determine whether gene expression is necessary for extinction memory.

Expression of Extinction

Once potentiated, how does mPFC inhibit fear after extinction? The infralimbic subregion of mPFC has extensive projections to the amygdala, as well as the amygdala’s targets in the hypothalamus and brainstem (Floyd et al 2001; Hurley et al 1991; Vertes 2004). If these projections are inhibitory, the IL could override amygdala-generated fear responses. The physiological effect of many of these projections is not known, but anatomical support exists for IL-mediated inhibition of the amygdala. IL projects robustly to the region between the central and basolateral nuclei, containing intercalated (ITC) cells (Cassell and Wright 1986; McDonald et al 1996). ITC cells are gamma-aminobutyric acid (GABA)ergic neurons (Paré and Smith 1993a) that project to the central nucleus (Paré and Smith 1993b) and are responsible for feed-forward inhibition of central nucleus output neurons (Royer et al 1999). In support of this model, electrical stimulation of the IL area decreased the excitability of brainstem-projecting neurons of the amygdala central nucleus (Quirk et al 2003) and decreased the expression of conditioned fear (Milad et al 2004). According to this model (Figure 3), extinction-induced potentiation of tone responses in IL neurons would cause feed-forward inhibition of the central nucleus, thereby preventing fear signals in BLA from exiting the amygdala. Consistent with this, it recently was shown that chemical stimulation of IL

![Figure 3](https://www.sobp.org/journal)
increased c-Fos expression in amygdala ITC cells (Berretta et al 2005). ITC cells also exhibit NMDA-mediated plasticity (Royer and Paré 2002), suggesting that they may participate in long-term storage of extinction.

Conflicting Lesion Evidence on the Role of the mPFC in Extinction

Although there is much physiological evidence in favor of a functional role of mPFC in learning and expression of extinction, there also are conflicting lesion reports. Two groups did not find any effect of pretraining mPFC lesions on expression of conditioned fear (Gewirtz et al 1997; Vouimba et al 2000), whereas another study found that lesions made after conditioning did not impair subsequent extinction (Morgan et al 2003). Interpretation of permanent lesion effects often is hampered by potential recovery of function or compensation by other structures. There is a pressing need, therefore, for studies that use temporary inactivation of mPFC via microinfusion of local anesthetics or the GABA antagonist muscimol. Preliminary reports using these techniques are conflicting, showing increased fear (Corcoran and Maren 2003), decreased fear (Sierra-Mercado et al 2005), or no effect (Myers and Davis 2004) in rats recalling extinction. A challenge for future studies will be to identify the factors that could account for variability between laboratories. These might include contextual variables (e.g., AAA vs. ABB designs), the presence of a competing appetitive instrumental response (such as bar-pressing for food), or the number of extinction trials (e.g., overtraining-induced masking of effects). Another possible reason for negative lesion effects is that the mPFC likely is part of a network of structures that collectively consolidate and express extinction memory (Barrett et al 2003). Disconnection of a sufficient number of structures within the network may be a prerequisite for observing lesion deficits. Finally, recent studies show that mPFC neurons can signal acquisition of fear conditioning (Baeg et al 2001; Laviolette et al 2005) and excite neurons in the BLA (Likhtik et al 2005), suggesting that there may be separate modules within mPFC for exciting versus inhibiting fear.

Enhancing Prefrontal Function Strengthens Extinction

If prefrontal activation is essential for extinction learning, then stimulating prefrontal cortex should strengthen extinction. Support for this idea comes from experiments using electrical stimulation and metabolic enhancers. Electrical stimulation was used to mimic short-latency tone-evoked responses of infralimbic neurons (100–400 ms after tone onset; Milad et al 2004; Milad and Quirk 2002). Pairing this brief IL stimulation with conditioned tones reduced the expression of freezing, consistent with feed-forward inhibition of amygdala output neurons (Quirk et al 2003). mPFC stimulation also strengthened extinction learning as evidenced by persistent decreased fear responses the day after the stimulation, suggesting LTP of extinction-related synapses in mPFC.

The role of LTP was tested directly by enhancing mPFC responsiveness to MD thalamic inputs by applying high-frequency stimulation before extinction training (Herry and García 2002). MD stimulation had no effect on the rate of extinction learning within the training session, supporting lesion and unit-recording findings that mPFC is not responsible for short-term extinction memory. One week later, however, retention of extinction was markedly improved in potentiated rats, as evidenced by low rates of spontaneous recovery of freezing. Improvement in extinction retention was correlated with potentiation of mPFC evoked potentials. Thus, mPFC LTP prevented the spontaneous recovery of conditioned freezing that normally is observed with the passage of time.

An additional approach to enhancing mPFC function is the use of metabolic enhancers such as methylene blue (MB), which improve activity-dependent brain energy production by targeting mitochondrial oxidative metabolism (Callaway et al 2002). A memory-improving action of MB in rats first was demonstrated for inhibitory avoidance learning (Martinez et al 1978). Gonzalez-Lima and Bruchey (2004) investigated whether postextinction administration of MB could enhance retention of an extinguished conditioned response. Postextinction freezing was 50% lower in rats that were receiving 4 mg/kg of MB, a dose that chronically is used in human beings without negative side effects (Naylor et al 1986). Control rats injected with MB showed no changes in motor activity or general fearfulness, suggesting that postextinction MB administration specifically enhanced memory for extinction. Rats with improved retention of extinction also showed a greater relative increase in cytochrome oxidase activity in the same prefrontal cortical regions that are activated during extinction recall (Barrett et al 2003). Thus, MB improved extinction by augmenting extinction-induced potentiation of mPFC. Note the parallel with electrical stimulation and unit-recording findings (Table 1). Conversely, decreases in cytochrome oxidase activity in the prefrontal cortex produced by genetic selection of rats that are predisposed to helplessness (Shumake et al 2000) results in rats with deficits in fear extinction that simulate the PTSD behavioral phenotype (Shumake et al 2005).

Relevance to Treatment of Psychiatric Disorders

There is great interest in finding more effective treatments for anxiety disorders, which are among the most common mental health problems. Extinction deficits have been implicated as a possible risk factor for the development of PTSD (Charney 2004; Lissek et al 2005; Milad et al 2005). People suffering from PTSD show reduced extinction of aversively conditioned responses (Charney et al 1993; Peri et al 2000) and show impairments in a functional network involving the amygdala and anterior cingulate (Gilboa et al 2004; Shin et al 2001). Brain-imaging studies of PTSD patients show reduced activity (Bremner 2002; Shin et al 2004) and reduced volume (Rauch et al 2003) in the perigenual prefrontal cortex, an area that is homologous with extinction-related regions of rodent mPFC (Milad et al 2006). These studies also show increased amygdala activity in PTSD patients who are exposed to traumatic stimuli (Bremner 2003; Shin et al 2004), suggesting a lack of top-down control of the amygdala by structures involved in extinction of fear.

Several recent functional imaging and volumetric studies demonstrate that extinction activates perigenual and associated regions of prefrontal cortex in human beings (Gottfried and Dolan 2004; Milad et al 2005; Phelps et al 2004). In particular, Rauch and coworkers demonstrated that retention of fear extinction was correlated with the thickness of the vmPFC (Milad et al 2005), suggesting that the likelihood of developing PTSD depends on the integrity of the prefrontal extinction system. For a complete review of the human literature on extinction, see Rauch et al (2006, in this issue).

Behavioral therapy for PTSD (exposure therapy) is based mainly on the process of extinction (Hermans et al 2005). Therefore, methods of facilitating extinction and preventing the return of fear may lead to more effective therapeutic interventions. Current behavioral techniques such as flooding and implantation could be improved by pharmacological interventions that accelerate and strengthen extinction. For example, a reduction in

www.sobp.org/journal
the number of exposure sessions required to successfully extin-
guish fear responses could counteract the relatively high dropout
rate that is observed with this type of therapy (van Minnen and
Hagenaars 2002).

Several recent studies have shown that extinction learning in
rats can be accelerated and strengthened with systemically
applied drugs. These include the noradrenergic antagonist yoh-
himbine (Cain et al 2004), the dopamine D2 receptor antagonist
raclopride (Ponnusamy et al 2005), the cannabinoid reuptake
inhibitor AM404 (Chhatwal et al 2005), and the NMDA receptor
partial agonist D-cycloserine (DCS; Ledgerwood et al 2003;
Walker et al 2002). With the exception of DCS, the locus of action
in the brain of these drugs is not yet known. On the basis of
previous work, however, modulation of dopaminergic and nor-
adrenergic systems in the rat mPFC is likely to modulate the rate
of extinction (McCormick and Thompson 1982; Morrow et al
1999). DCS has been shown to be effective when infused into the
BLA (Walker et al 2002), and clinical studies show that adminis-
tering DCS to acrophobic subjects who are undergoing exposure
therapy improves the effectiveness of the therapy (Ressler et al
2004). However, there are some limitations to this approach, such
as CS nonspecificity and tolerance to repeated DCS (Ledgerwood
et al 2005; Parnas et al 2005). An alternative approach would be to use
the metabolic enhancer MB (Rilha et al 2005). A metabolic approach
differs from the transmitter-receptor approach because it is not
selective for a single transmitter system or brain region but targets all
the synapses that require increased energy during postextinction
memory consolidation, such as in the various prefrontal cortex
regions (Gonzalez-Lima and Bruchey, 2004). Other approaches to
activating mPFC during exposure therapy could include repetitive
transcranial magnetic stimulation (Cohen et al 2004), deep brain
stimulation (Abelson et al 2005), or even meditation (Lazar et al
2000). Thus, prefrontal activation achieved pharmacologically,
physiologically, or psychologically could serve as a useful adjunct
to exposure therapy by strengthening memory for the extinction
(safety) experience.

This work was supported by NIH grants: R01-MH58883;
S06-GM08239, and R21-MH72156 (to GJQ), the Philippe Founda-
tion (to RG), and NIH grant R01-NS55775 (to FGL).

Aspects of this work were presented at the conference “Extinc-
tion: The Neural Mechanisms of Behavior Change”, February
2–6, 2005 in Ponce, Puerto Rico. The Conference was sponsored by
the National Institute of Mental Health, National Institute on
Drug Abuse, Ponce School of Medicine, University of Puerto Rico
Centers of Biomedical Research Excellence (COBRE) Program,
Pfizer Global Pharmaceutical, and the Municipality of Ponce.

(2005): Deep brain stimulation for refractory obsessive-compulsive dis-

Anglada-Figueroa D, Quirk GJ (2005): Lesions of the basal amygdala block
inhibitor AM404 (Chhatwal et al 2005), and the NMDA receptor
in the medial prefrontal cortex impairs consolidation of fear extinction. Soc

Butler CM, Mishkin M, Rosvold HE (1963): Conditioning and extinction of a
food-rewarded response after selective ablation of frontal cortex in rhes-

Cain CK, Blouin AM, Barad M (2004): Adrenergic transmission facilitates

Methylene blue restores spatial memory retention impaired by an inhib-

Cassell MD, Wright DJ (1986): Topography of projections from the medial

Chan KH, Morell JR, Jarrard LE, Davidson TL (2001): Reconsideration of the
role of the hippocampus in learned inhibition. Behav Brain Res 119:111–
130.

Charney DS (2004): Psychobiological mechanisms of resilience and vulner-
ability: Implications for successful adaptation to extreme stress. Am

Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M (1993): Psychobi-
ological mechanisms of posttraumatic stress disorder. Arch Gen Psychi-
atriy 50:294–305.

Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005): Enhancing cannabi-
noid neurotransmission augments the extinction of conditioned fear.
Neuropsychopharmacology 30:516–524.

tive transcranial magnetic stimulation of the right dorsolateral prefron-
tal cortex in posttraumatic stress disorder: A double-blind, placebo-

to the medial frontal cortex of the rat. II. Cortical and subcortical affer-

Corcoran KA, Maren S (2003): Reversible inactivation of medial prefrontal
cortex disrupts the retrieval of fear extinction. Soc Neurosci Abstr 199.8.

Cox J, Westbrook RF (1994): The NMDA receptor antagonist MK-801 blocks
acquisition and extinction of conditioned hypothalamic responses in the

startle: Blockade by infusion of an NMDA antagonist into the amygdala.

Farinelli M, Deschaux O, Hugues S, Thevenet A, Garcia R (in press): Hip-
pocampal train stimulation modulates recall of fear extinction indepen-
dently of prefrontal cortex synaptic plasticity and lesions. Learn Mem.
Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R (2001): Orbitalprefrontal
medial cortical projections to hypothalamus in the rat. J Comp Neurol 432:
307–328.

Garcia R (2002): Stress, synaptic plasticity, and psychopathology. Rev Neuro-

Gewirtz JC, Falls WA, Davis M (1997): Normal conditioned inhibition and
extinction of freezing and fear-potentiated startle following electrolytic

Functional connectivity of the prefrontal cortex and the amygdala in

Gonzalez-Lima F, Bruchey AK (2004): Extinction memory improvement by

Gottfried JA, Dolan RJ (2004): Human orbitofrontal cortex mediates extin-
c tion learning while accessing conditioned representations of value. Nat
Neurosci 7:144–1152.

Hermans D, Dirikx T, Vansteenwegenin D, Baeyens F, Van den Bergh O, Eelen
(2005): Reinstatement of fear responses in human averse condition-

www.sobp.org/journal

Myers KM, Davis M (2004): Temporary inactivation of the infralimbic region of medial prefrontal cortex via localized infusion of muscimol or biclofen does not impair conditioned inhibition or extinction of fear potentiated startle in rats. Soc Neurosci Abstr 328.2.

www.sobp.org/journal

