Community Acquired Pneumonia

Ruth A. Santos, MD
University of Puerto Rico
Medical Science Campus
Internal Medicine Department
Division of Pulmonary Medicine, Critical Care and Sleep
Disorders

Introduction CAP

- 4 million cases/year of CAP with
- up to 1million hospital admissions
- Incidence increasing among the elderly
 - 915,000 cases in adults ≥ 65 years
- Cost \$40 billion a year

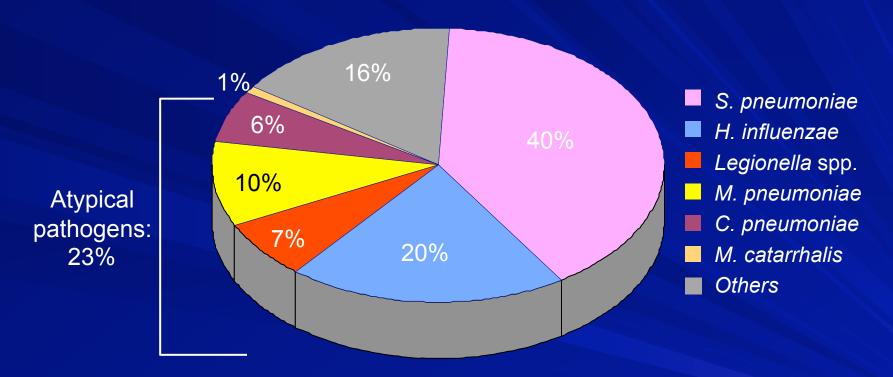
Introduction CAP

- 8th leading cause of death in the US
- 6th leading cause of death in the US in those over age 65
- Mortality
 - Outpatient <1%</p>
 - Admit (ward) 10%-14%
 - ICU 30%-40%

Guidelines for CAP

- First available in 1993
- The most recent guidelines for the US were published in 2007
 - Joint effort of the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA)
- Clinical guidelines have proven to be useful for predicting mortality, triaging patients, treatment recommendations, and preventive measures.

Definition (IDSA)

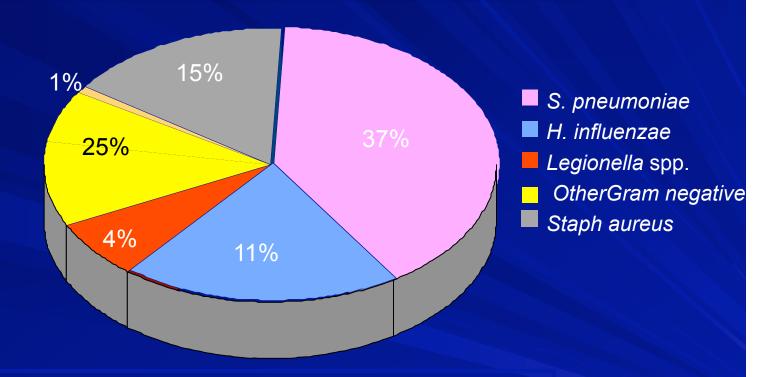

- Acute infection of the pulmonary parenchyma accompanied by:
 - Acute infiltrate on CXR or auscultatory findings consistent with pneumonia
 - And usually two of the following:
 - fever or hypothermia
 - rigors, sweats
 - new cough with or without sputum (or change in color)
 - chest discomfort
 - dyspnea
 - In the elderly, more common to be afebrile/ hypothermic, and altered mental status sometimes is the ONLY complaint.

Classification of Infections:

- Healthcare-associated Pneumonia (HCAP)
 - An infection in a patient who:
 - was hospitalized in an acute care hospital for ≥ 2 days within 90 days of the infection
 - resides in a nursing home or long-term care facility
 - received recent iv antibiotic therapy, chemotherapy or wound care within the past 30 days of the infection
 - attended a hospital or hemodialysis clinic
- Hospital-acquired pneumonia (HAP)
 - An infection/pneumonia that occurs ≥48 hrs after admission and was not incubating at admission
- Ventilator-associated Pneumonia (VAP)
 - pneumonia at > 48-72 hrs after endotracheal intubation

CAP: Key Bacterial Pathogens

2-5% CA Staphylococcus has been reported


Condition	Commonly Encountered Pathogens
Alcoholism	S.Pneumoniae (including DRSP), anaerobes, Gram-negative bacilli, tuberculosis
COPD/smoker	S. pneumoniae, H, infuenza, M. catarrhalis, Legionella
Nursing home residency	S. pneumoniae, Gran-negative bacilli, H. infuenza, S. aureus, anaerobes, C. pneumoniae, tuberculosis
Poor Dental Hygiene	Anaerobes

Condition	Commonly Encountered Pathogens
Epidemic Legionnaire's disease	Legionella species
Exposure to bats	Histoplasma capsulatum
Exposure to birds	Chlamydia psittaci, Cryptococcus neoformans, H. capsulatum
Exposure to rabbits	Francisella tularensis

Condition	Commonly Encountered Pathogens
Travel to southwest US	Coccidioidomycosis
Exposure to farm animals or parturient cats	Coxiella burnetti (Q fever)
Influenza active in the community	Influenza, S. pneumoniae, S. aureus, H. influenzae
Suspected large- volume aspiration	Anaerobes, chemical pneumonitis, or obstruction

Condition	Commonly Encountered Pathogens
Structural disease of lung (bronchiectasis, cystic fibrosis, etc)	P. aeruginosa, Pseudomonas cepacia, S. aureus
Injection drug use	S. aureus, anaerobes, tuberculosis, Pneumocystis carinii
Endobronchial obstruction	Anaerobes
Recent antibiotic therapy	Drug-resistant pneumococci, <i>P. aeruginosa</i>

HCAP: Key Pathogens

HAP and VAP show a progressive higher incidence of Gram negatives and MDR

Approach to diagnosis of CAP

- History (sick contacts, exposures, travel, pets, risks for immunosuppression)
 - Nursing home, recent admission, antibiotics, smoking status, skin rashes, dental work COPD, vaccination status, exposure to animals, nausea, vomiting, unconscious
- Physical exam
- CXR (pa/lat)
- Labs: CBC, chemistry, LFT's, blood cultures, sputum, ABG if hypoxic

Case

- 45 yr old man presents to ER
- Cough, dyspnea, recent flulike illness followed by sudden onset of fever and weakness
- Hx: 10 pack-year smoker, DM II
- Exam:
 - HR 100, RR 24, BP normal, T 38C, basal crackles
- SaO2 93%,
- WBC 13,000
- BUN 7.8

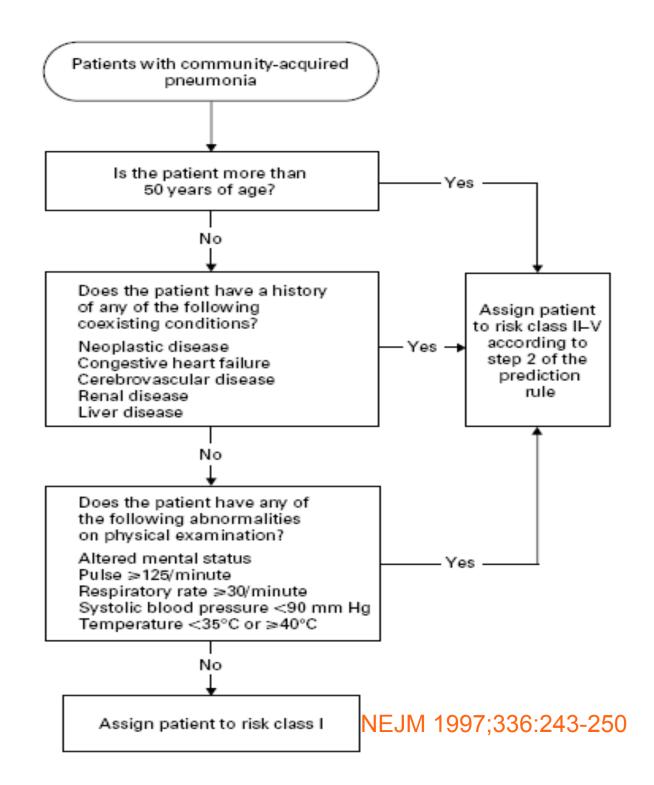
Case

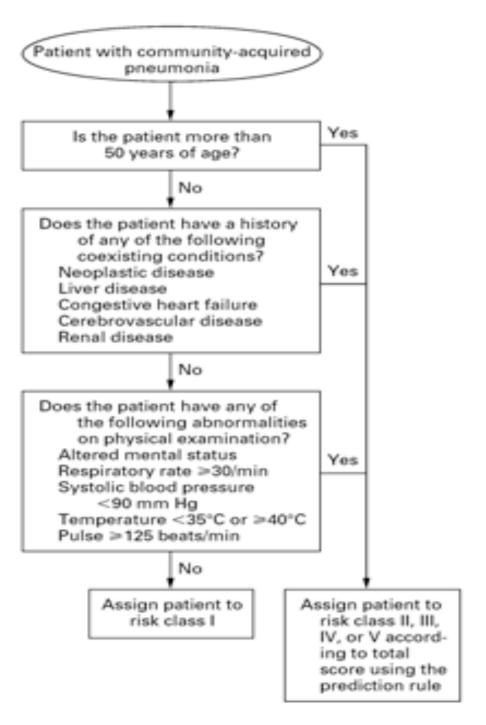
Based on this person's level of illness, what is the most appropriate next step?

- 1. Admit to ward
- 2. Treat and send home
- 3. Ask for CT scan
- 4. Consult infectious disease specialist
- 5. Sputum culture

Can you stratify Patients According to Risk of Mortality?

- Hospital admission decision
- CURB-65 severity of illness score (based on confusion, uremia, respiratory rate, low blood pressure, age 65 years of greater)
- PSI (Pneumonia Severity Index) another more complicated stratification


CURB - 65


Clinical Factor	Points
C - Confusion	1
U - Urea > 19mg/dL	1
R - Respiratory Rate ≥ 30/min	1
B – BP: Systolic < 90 mmHg Diastolic ≤ 60 mmHg	1
65 - Age > 65 years	1
Total	

CURB-65 Score

CURB-65 score	Deaths/total (%)*	Recommendation†
0	7/1,223 (0.6)	Low risk; consider home treatment
1	31/1,142 (2.7)	
2	69/1,019 (6.8)	Short inpatient hospitalization or closely supervised outpatient treatment
3	79/563 (14.0)	Severe pneumonia; hospitalize and consider admitting to intensive care
4 or 5	44/158 (27.8)	

Pneumonia PORT Prediction Rule for Mortality Risk Assessment

CHARACTERISTIC Demographic factors	No. of Points Assigned
Age Men Women Nursing home resident Coexisting illnesses Neoplastic disease Liver disease Congestive heart failure Cerebrovascular disease Renal disease	Age (in yr) Age (in yr) – 10 +10 +30 +20 +10 +10 +10
Findings on physical examination Altered mental status Respiratory rate ≥30/min Systolic blood pressure <90 mm Hg Temperature <35°C or ≥40°C Pulse ≥125 beats/min	+20 +20 +20 +15 +10
Laboratory and radiographic findings Arterial pH <7.35 Blood urea nitrogen ≥30 mg/dl (11 mmol/liter) Sodium <130 mmol/liter Glucose ≥250 mg/dl (14 mmol/liter) Hematocrit <30% Partial pressure of arterial oxygen <60 mm Hg or oxygen saturation <90% Pleural effusion	+30 +20 +20 +10 +10 +10

Risk	RISK CLASS	Score	MORTALITY
Low	1	Based on algorithm	0.1%
Low	II	<70	0.6%
Low	III	71-90	0.9%
Moderate	IV	91-130	9.3%
High	v	>130	27.0%

PORT Score

Total Points	Class	Treat	Mortality
None (see step 1)		Outpatient	0.4%
≤70		Outpatient	0.6%
71-90		Brief Inpatient	2%
91-130	IV	Inpatient	8-9%
≥130	V	Inpatient	20-30%

NEJM 1997;336:243-250

Modified ATS Criteria of Severity

- 2 of baseline (minor) clinical parameters:
 - Systolic BP < 90 mm Hg</p>
 - Multilobar involvement
 - PaO2/FiO2 <250or
- 1 of 2 major parameters
 - Requirement of mechanical ventilation
 - Septic shock

Role of Combination Therapy in CAP

Combination Therapy in Severe CAP

- Prospective,multicenterobservationalstudy
- 844 adults bacteremia S. pneumoniae
- Critically ill
 mortality
 reduced 23% vs
 55 %, p=0.0015

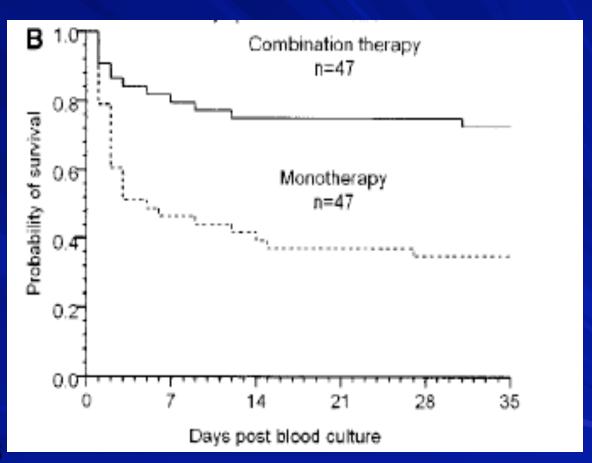


Table 2. Group II: Outpatient, With Cardiopulmonary Disease and/or Other Modifying Factors

Organisms

Therapy

S pneumoniae including DRSP

М рпеитопіае

С рпеитопіае

Mixed infection

H influenzae

Enteric Gram-negatives

Respiratory viruses

Miscellaneous

M catarrhalis, Legionella spp, aspiration (anaerobes), β-lactam (cefpodoxime, cefuroxime, high-dose amoxicillin, amoxicillin/clavulanate, plus macrolide or doxycycline, or antipneumococcal fluoroquinolone

Organisms	Therapy
All of the pathogens in Table 4 plus P aeruginosa	Selected IV antipseudomonas β-lactam (cefepime, imipenem, meropenem, piperacillin/ tazobactam), plus IV antipseudomonal quinolone (ciprofloxacin), or selected IV antipseudomonas β-lactam (cefepime, imipenem, meropenem, piperacillin/ tazobactam), plus IV aminoglycoside, plus IV macrolide or IV nonpseudomonal fluoroquinolone

Pneumococcal Vaccine

- Rate of disease caused by PRSP was 35% lower in 2001 than in 1999
- >65 years of age
 - \$\\$18\% (49.5 per 100,000 vs 60.1 per 100,000)

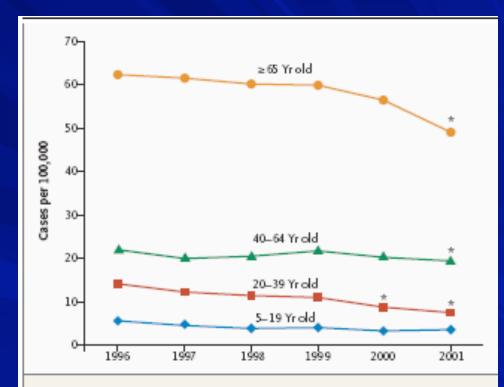


Figure 3. Rates of Invasive Pneumococcal Disease among Persons at Least Five Years Old, According to Age Group and Year.

Data are from the Active Bacterial Core Surveillance from 1996 through 2001. The 1996 and 1997 rates do not include data from New York State. Asterisks indicate P<0.05 for comparisons of the rate in 2000 or 2001 with the combined rate for 1998 and 1999.

Case 2

- 30 y/o woman comes to ED at 4:00am with acute fever, cough, dyspnea. Recent viral syndrome
- Severely hypoxemic
- Intubated
- Tx: 3rd Gen Ceph plus FQ

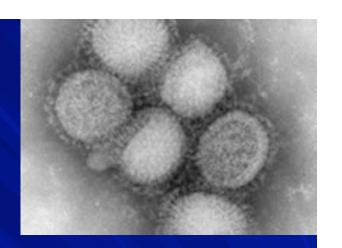
Case 2

- Gram stain of ET
 aspirate reveal Gram
 positive cocci in
 clusters
- Vancomycin is added
- Patient with Multiorgan dysfunction; expires at 4:00 pm
- CA-MRSA isolated
 - PVL+ (PantonValentine Leukocidin)

Community-acquired MRSA

- Severe, rapidly progressing, necrotizing pneumonia
- Associated with skin and soft tissue infections
- Hx of preceding influenza-like illness
- May be related to staphylococcal virulence factor PVL
- Resistant to all β-lactams including cephalosporins, cefamycins, and carbapenems

Community-acquired MRSA


- For toxin-producing strains, antibiotics that inhibit protein synthesis may be better
 - Linezolid or clindamycin (not vanco!!!!)
- Characteristics:
 - Mean age
 - Underlying disorder
 - Prior influenza
 - Received appropriate tx
 - Highly virulent pathogen

Conclusions

- S. Pneumonia remains the most important pathogen in CAP
- Several tools available to identify high risk candidates
- Local rates of bacterial resistance should be considered in the selection of antimicrobial tx.
- Legionella should be covered in all empiric regimens of severe CAP
- Watch out for severe viral pneumonia
- Look out CA-MRSA

Novel H1N1 Flu

- Influenza virus
- Quadrupple resonant virus.
 - Contains genes from pig, bird and human influenza viruses
 - a combination that has never been observed before anywhere in the world
- Spreads from human to human

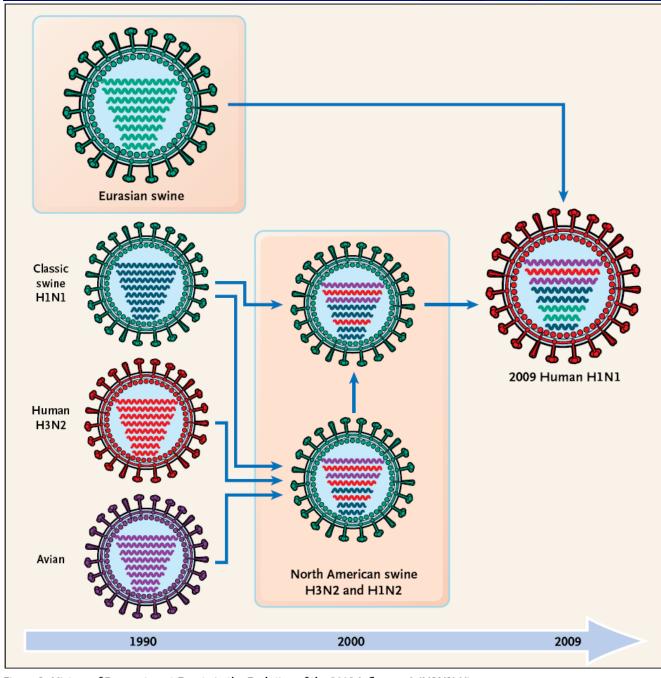


Figure 1. History of Reassortment Events in the Evolution of the 2009 Influenza A (H1N1) Virus.

- •The 8 segments shown within each virus code for proteins of the influenza A virus
- •The segments of the human 2009 influenza A (H1N1) virus have coexisted in swine influenza A virus strains for more than 10 years.

Downloaded from www.nejm.org on June 9, 2009.

- Seasonal Flu
 - 36,000 deaths/year in the US
 - 90% people > 65yrsold

- N1H1
 - Most people confirmed are between 5-24 yrs old

- Higher risk groups
 - Age > 65 or < 5yrs</p>
 - Pregnant women
 - Chronic medical conditions (asthma and diabetes

Symptoms of novel influenza A(H1N1)?

- Similar to regular human seasonal influenza symptoms:
 - Fever
 - Respiratory symptoms such as cough or runny nose
 - Sore throat
 - Possibly other symptoms such as
 - Body aches (particularly muscle pain)
 - Headache
 - Chills
 - Fatigue
 - Vomiting or diarrhoea (not typical for influenza but reported by some of the recent cases of novel influenza)
- In some cases, severe complications could occur even in normally healthy persons who become infected with the virus.

Treatment of novel influenza virus A(H1N1)

- Most swine influenza viruses have been susceptible to antiviral medications
 - Neuraminidase inhibitors (oseltamivir and zanamivir)
 - Older antiviral drugs (amantadanes).
- The novel influenza virus is susceptible to neuraminidase inhibitors but resistant to amantadanes.

